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zone, and this result rules out the possibility of the 
space group being Ff~3m rather than Fd3m. 
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Nagoya University and Professor Yoshito Matsui of 
Okayama University, who directed our attention to the 
present problem. We also thank Professor Kazuhiro 
Otsuka of Tsukuba University and Professor Nobuo 
Morimoto of Kyoto University for their interest in this 
problem. 
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Abstract 

An approximate expression is given for describing 
Bloch-wave amplitudes of electrons which undergo 
multiple inelastic scattering in crystalline specimens. 
The expression is derived from differential equations of 
inelastic scattering given by Howie [Proc. R. Soc. 
London Ser. A (1963), 271, 268-2871. In the course 
of the derivation, the differential equations are re- 
duced to a transport equation which has been applied 
to the analysis of multiple inelastic scattering in non- 
crystalline specimens. The identity between them is 
discussed, including the approximations employed. The 
expression was used to analyze Bloch-wave amplitudes 
of transmitted electrons at various thicknesses of 
copper and silicon crystals. It was found that the values 
of the amplitudes were sensitive to the shape of the 
interaction potential resulting from the excitation of 
core electrons. An accurate estimate of the potential 
will be required in future studies. 

1. Introduction 

The intensity of electrons passed through thin crystals 
shows a diffuse distribution around each diffraction 

*Present address: Esco Ltd., Nishikubo 1-3-10, Musashino, 
Tokyo 180, Japan. 

0567-7394/80/010126-09501.00 

spot and the distribution is normally anisotropic (e.g. 
Kikuchi patterns). This is due to the dynamical 
diffraction effect of inelastically scattered electrons. 
The theoretical study on the diffuse intensity was first 
made by Kainuma (1955) and subsequently by Takagi 
(1958a,b). Since then a number of theoretical studies 
have been made (Fujimoto & Kainuma, 1963; 
Okamoto, Ichinokawa & Ohtsuki, 1971). These 
theories succeeded in interpretating qualitative features 
of both Kikuchi lines and bands. It is well known, 
however, that the quantitative prediction is still un- 
satisfactory for thick specimens since the analysis is 
made within the framework of single inelastic scatter- 
ing. Meanwhile, there is an increasing interest in 
analyzing diffraction patterns of bulk specimens which 
are obtained with reflective high-energy electrons and 
back-scattered electrons. In these cases, the effect of 
multiple inelastic scattering is so prominent that the 
knowledge as regards the behavior of diffusely scat- 
tered electrons is required in more detail. 

Recently, several theoretical approaches to the 
analysis of multiple inelastic scattering have been 
proposed (Kamiya & Shimizu, 1976; Rez, 1978). In a 
previous report (Yamamoto, Mori & Ishida, 1978), the 
authors also attempted to deal with multiple inelastic 
scattering using a Monte Carlo method and studied the 
contrast of electron channelling patterns in scanning 
electron microscopy. In this approach, however, the 
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diffraction effect was excluded except for the first 
inelastic scattering. Generally, the main difficulty in 
theory is how to include the dynamical diffraction 
effect in multiple inelastic scattering. In the present 
paper, the multiple diffraction effect is treated more 
rigorously, and a simple expression of Bloch-wave 
amplitudes at various thicknesses is derived from 
differential equations of inelastic scattering given by 
Howie (1963). It is also shown that the present theory 
can readily be extended to the analysis of intensities of 
back-scattered electrons• The formula thus obtained is 
somewhat analogous to that derived for fluxes of 
inelastically scattered electrons in noncrystalline 
specimens based on a transport equation (Spencer, 
1955; Dashen, 1964; Fathers & Rez, 1978). Physically, 
however, there is some difference between them: the 
quantities evaluated are stationary fluxes of electrons 
for the latter case whereas they are Bloch-wave 
amplitudes in the present theory. 

The expression is further used to analyze intensities 
of electrons diffusely scattered around the incident 
direction in the case of relatively thin specimens• It is 
found that the calculated intensities are markedly 
affected by high- or medium-angle inelastic scattering 
via small-angle scattering which is caused by the 
excitation of core electrons. An accurate determination 
of the scattering cross section for this type of excitation 
will be desired in future studies because the main 
energy-loss process results from this excitation. 

2. Theory 

Basic processes of single inelastic scattering have been 
so far well understood in theory (Yoshioka, 1957; 
Takagi, 1958a,b; Whelan, 1965a,b). We first define 
several quantities which will be needed to describe 
scattering processes in the later formulation. To avoid 
confusion the theory is developed for transmitted 
electrons in thin specimens, and then extended for 
back-scattered electrons. 

2.1. Descriptions of inelastic scattering processes 

In a perfect crystal, the Bloch wave with wave vector 
k / (i and n are the branch index and the energy level of 
the dispersion surface) induces the excitation of other 
Bloch waves due to inelastic scattering. Howie (1963) 
has shown that the relations among Bloch-wave 
amplitudes ~,~(z) of state k~ at a crystal depth of z are 
given by 

d~j(z) /dz  = ~ y. em,,J, exp (2~/Jk~,,z) ~,(z), (1) 
n i 
t l , e m  

where 

j i  __ mn c~n= ~ C~(k j )  Hg_ h C~* (k/) (2) 
g , h  

and 
o"k~n = k~ + Q m - (  k / +  Qn), (3) 

i i in which case Cx(kn) is the gth Fourier coefficient of the 
k~ Bloch wave, Qm is the wave vector of the crystal 
excitation with state m and H'~ n is the gth Fourier 
component of the interaction potential caused by the 
transition between crystal states m and n. In these 
equations, k~ and Qm are restricted to the first Brillouin 
zone. In (2), k~z means the z component of wave vector 
k~ (the z axis is parallel to the incident direction), and it 
can be approximated by k~ since we here confine 
ourselves to the intensity of electrons which are 
scattered slightly around the incident direction. 

2.2. The multislice method 

When the crystal is sliced into many thin layers, 
equation (1) can be integrated for each layer; 

I]lJm(Z -1- A Z )  ~- I]lJm(Z) + Z Z Cm exp(2nigk~.~z) 
n i 
nC-m 

x {[exp(2zd6k~.zAZ) 
• j i  i -- 1]/2za~kmnz } gtn(z), 

where Az is the thickness of the layer. If the thickness is 
small enough, the value within the curly brackets can 
be put equal to Az, even for large values of Jk~n z. Using 
the above relations, squared Bloch-wave amplitudes 
can be expressed as 

I (z + dO12 = I 2 + Az Z Z Ic . 
n i 
h e m  

x exp[27dJk~,,z z] vzi(z)~'(z) + c~*,, 

x exp[-2zdJk~,,zZ] ~n'(z)~(z)} 

+ Y. Y Cm. j' CJm ; 
i k n ,p  

n ¢l'n 
peru 

x exp[2zci(6k~,,~- 6k~p~)z] 

x ~/~(z)~k'(z).  (4) 

Now we assume that ~(z)gtJm'(Z) can be neglected in 
(4) when either 1 4: m or i 4: j. The terms neglected give 
rise to interference parts in the intensity of diffusely 
scattered electrons, i.e. subsidiary fringes of Kikuchi 
lines. This fact has been shown in terms of the first- 
order perturbation theory (Fujimoto & Kainuma, 
1963). These fringes are usually discerned with an 
appreciable intensity in diffraction patterns of thin 
crystals• The effect of the neglected terms will be dis- 
cussed in a later section. On this assumption, we can 
obtain 

I  ,J(z + zz)12  = I 2 + y. IcJLI 
i n 
n C m  

(5)  
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This equation provides a simple picture for the analysis 
of inelastic scattering: the increase in the intensity of 
Bloch state (m,j), i.e. Iqfl(z + A Z ) I  2 - -  I ~ ( z ) l  2, is 
brought out by the transitions from all other Bloch 
states to the (m,j) state, as schematically shown by the 
solid lines in Fig. 1. On the other hand, there is a 
decrease in the intensity since the (m,j) state gives rise 
to the transitions from the state to all other states, as 
shown by the dotted lines. 

When the transitions are collected by using 
equations similar to (4), the decrease is given by 

Az y y Ico.~l~ . ~,~(~)12. 
n i 
n ~ m  

As a result, the final expression of squared Bloch-wave 
amplitudes becomes 

I ~,~(z + ~z)12 = ,  ~ ( z ) ,  2 + Zz 2 Y E t e l  '2 IG(z)  '2 
i n 
n ~:m 

-- Az~ y y lC~mt21~,Jm(z)l 2. (6) 
i n 
r t C m  

Now, we define matrix elements of single inelastic 
scattering for the transition from the (n,i) state to the 
(m,j) state { 

}dzlcJ~n Iz, for (m,j) 4= (n,i), 
Tin j,., = i (7) 

~--Az ~ ,Z ,  I em,.ji 12, for (m,j) = (n,i). 
j m 

As will be later shown. Tin j.,. is independent of layer 
thickness Az which explicitly appears in (7). We also 
define the vector ¢~(z) which consists of the array of 
I~,~(z)12; 

~ ( z ) = {  .... , ~ ( z ) l  2 . . . .  }. 

Equation (6) can then be summarized in the matrix 
formula as follows: 

ff~(z + Az)= (E + AzT)~(z), (8) 

where E is the unit matrix. The squared Bloch-wave 
amplitudes are hereafter termed the excitation weights 
of the Bloch waves. 

NI 

O 

N2 

Fig. 1. Symbolic diagram of scattering processes. 

2.3. The elements of the transition matrix 

As seen in the derivation of (6), the diagonal element 
Tni.n i must coincide with the so-called absorption 
coefficient #i(k~) of the (n,i) Bloch state with opposite 
sign. To see this in another form, we substitute (2) into 
(7). In the present case, energy loss is much smaller 
than the energy of the incident electrons so that the 
difference between dispersion surfaces of the incident 
and inelasticaUy scattered electrons can be neglected. 
Then we are able to omit suffixes m and j in k~, thereby 
specifying wave vectors k/~ and k~ at the initial and 
scattered states as k and k', respectively. Absorption 
coefficient - - T k i ,  k i in (7) becomes 

/.ti(k) = Az(m/2rch 2 k) 2 

Ch(k)Ck,(k)Hg_ h (9) x Z Y  Y Z ' ' s s. Hg_h,, 
k' h ,h '  g s 

where the summation over s is performed for all 
possible crystal excitation states. 

It is shown in the phenomenological treatment that 

u,(k) = (m/rch 2 k) ~ C/k(k) V~_ h, C~,(k), (10) 
h ,h '  

where V; is the imaginary part of the gth Fourier 
component of the crystal potential. Comparing (9) with 
(10), we have 

V'g= Az(m/4rch 2 k) Z ~. ~ HSh-~H~h "" (11) 
k' h s 

This is the same as the general expression of Vg given 
by Whelan (1965a,b). 

For simplicity, the specimen is assumed to be a 
mono-atomic crystal of simple cubic structure with 
centrosymmetry, and the wave-vector transfer of k' -- k 
is denoted by q0. It is shown that 

S* H~(q0) = Hg (--q0)= ~°(q0 + g ) =  ~0(q~), (12) 

where ~0 is the function specified by the crystal 
excitation. 

The summation over k' in (9) can be replaced in 
practice by the surface integral on the Ewald sphere 

Az ~ [c~,12 = vl k2f Ic~,l 2 dogq, (13) 
k '  

where v 1 is the volume of the thin layer and dogq is the 
solid angle in the direction of k'. It is convenient to 
introduce the quantity Sgh(q0) which was used in the 
previous study (Yamamoto, Mori & Ishida 1978). 
Equation (9) can be written as 

pi(k) = f Z Sgh(qo) C~(k)C/k(k) d°Jq • (14) 
g,h  
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Comparing (9) with (13) and also by noting (12), we 
can obtain 

$* 
Sgh(qo) = (m/2rch2) 2 vl Z H~(qo) Hg (qo). (15) 

s 

This quantity is independent of the crystal volume 
because H~ is normalized in the layer. As a result, (7) 
becomes 

Tk'L ki : 

Zl(,0q ~ ~ J t j , Cg(k )Cg,(k ) 
g,g'  h ,h '  

X S g _ h , g , _ h , ( q o )  C~(k) C~,(k), 

for (k',j) 4= (k, i), 

--gi(k), for (k',j) = (k, i), 

(16) 

where Ac% is the solid angle which the (k',j) state 
occupies around the k' direction on the Ewald sphere. 

2.4. Multiple inelastic scattering 

When the crystal is sliced into N layers with equi- 
thickness, O(D) at the bottom (z = D) can be 
connected to O(0) at the top surface using (8); 

~(D) = (E + DT/N)  N ~(0). 

As N is increased, this tends to 

O(D) = exp (TD) ¢~(0), (17) 

where 

exp (Tz) = E + zT + z 2 T2/2 + .... 

It can be shown from (7) that 

2.5. High-angle scattering 

The neglect of energy loss as well as the approxi- 
mation of small-angle scattering in the preceding sub- 
sections cannot be used for treating intensities of 
electrons scattered at higher angles. We separate the 
excitation weights into I~/-(z,k,rn)l 2 and I~(z,k,rn)l 2, 
where m indicates the energy level and suffixes F and B 
mean Bloch waves proceeding in the forward and back- 
ward directions relative to the incident beam (for 
simplicity, we restrict ourselves to the analysis of 
inelastically scattered electrons at normal incidence). In 
addition, all excitation weights belonging to energy level 
m are represented by OF(Z,m) and OB(z,m ). 

The excitation of phonons induces very small energy 
losses which allow us to neglect them practically. 
However, this excitation is responsible for high-angle 
scattering. In view of this, we separate the matrix 
elements of this excitation into TF(k',j,n; k,i,n) and 
T~(k',j,n; k,i,n) in the same manner as that applied to 
O. 

Meanwhile, the excitation of core electrons and 
plasmons causes energy loss, inducing very small-angle 
scattering. The matrix of this excitation is denoted by 
Ti(k',j,m; k,i,n) for the transition from energy level n to 
m, in which case back-scattering is neglected. 

It is somewhat lengthy to write down each element of 
the transition matrices T I, Te v and T~:, so we only give 
some rules to modify (16) for the present case, taking 
into account the above definitions and noticing that: 

(i) for TI,  Sg h should be replaced by S~, + S pj which gh 
result from the excitation of core electrons and 
plasmons, respectively; 

(ii) for Te ~ and off-diagonal elements of T F, Sg k 
should be replaced by Sg ph resulting from the phonon 
excitation; 

(iii) for diagonal elements of T~:, 

TkT, ki = Y TkT, ki = O. (18) 
k',j k,i 

This equation, in conjunction with (17) and (18), 
provides 

Z I¢'~,(z) I1= Z Iq/~,(0) 12= 1. 
k',j k',j 

This relation implies the conservation of the total 
electron number at each crystal depth. 

Moreover, if we find the orthogonal matrix C which 
enables T to be diagonalized, 

TC = CA, (19) 

where A is the diagonal matrix consisting of eigen- 
values for the transition matrix T. By utilizing (19), 
(17) can be expressed as 

q}(z) = C exp (Az) C- '  O(0). (20) 

TF(k,i,n; k,i,n)= -- Z Z T~(k',j,m; k,i,n) 
m k ' , j  

-- Z [ TF (k',j,n; k,i,n) 
k',j 

+ T~(k',j,n; k,i,n)]; (21) 

(iv) each element should be divided by cos 0 m which 
is omitted in the approximation of small-angle scatter- 
ing, where 0 m is the angle at which the electron is 
scattered with respect to the incident direction. In 
addition, CJ(k ') ~ CJ(km) and C i ( k )  --* Ci(kn). 

The equation of connecting excitation weights at 
depth z to those at depth z + Az can be expressed as 

¢~v(z' + Az', m) = [E + Az' T~(m,m)]q~v(z',m ) 

+ Az' TB(m,rn)q~B(z',m) 

+ Az' • T1(m,n)q~F(z',n), (22a) 
n<_m 
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~s(z '  + A z ' , m ) =  [ E -  Az' TF(m,m)]~s(z ' ,m)  

-- Az' TSe(m,m)~r(z ' ,m) 

- Az' ~. T1(m,n)t~B(z',n), (22b) 
n < m  

where z' and Az' are z/cos 0 m and Az/cos 0 m, respec- 
tively. 

¢~(z) is now rewritten as 

~(z) = [ ~'~(z),C:(z)] 

= [¢~F(z, 1), ¢~F(z,2), ..., ¢~F(z,m),...,  ~S(z ,  1), 

x ¢~S(z,2), ..., ¢~S(z,m),...], 

where the energy level of the incident electrons is 
denoted by m = 1. Equations (22a) and (22b) can be 
reduced to the same formula as (17). In this case, the 
transition matrix has the following form: 

where 

Ta TBAI 

T = --Ts --T ' 
(23) 

/ T~:(1,1) 0 1 = [TI(2,1) TF(2,2) (24a) 
TA ~TI(3,1). Tz(3,2) TF(3,3) . ' 

and 

T§(1,1) 0 

T~:(2,2) 

TB= T~:(3,3) . (24b) 

0 

From symmetry in (23), the orthogonal matrix C leads 
to 

(cll t C2 
C = (25) 

C2 C ' 

and the eigenmatrix A becomes 

A =  Aa 

where 

//-21, 0 

i __22, A a = - - 2 3 ,  , 

0 

(26) 

(2i > 0 for all i's). 

(27) 

To obtain intensities of back-scattered electrons, the 
following boundary conditions are applied: 

¢~F(0,j, 1) = C~o (k0)~kj, koi , (28a) 

¢~(D, j ,m)  = 0, for all m's and j 's .  (28b) 

These relations have been used in the theory of 
electron-channelling patterns (Hirsch & Humphreys, 
1970; Spencer & Humphreys, 1973). In the case of 
semi-infinite specimens (D --, c~), using (20), (25), (26) 
and (28), we can obtain 

¢~S(z) = C2 C~ -1 ¢~F(z) (29) 

and 

¢~V(z) = C 1 exp(A a) C] -1 ¢~V(0). (30) 

The derivation of (29) and (30) is due to Fathers & Rez 
(1978) from their theory of back-scattering yield for 
noncrystalline specimens. 

3. Procedures for calculations 

Elements of the transition matrix were evaluated in the 
case of thin specimens by applying the two-beam 
approximation to (16). As interaction potentials, the 
excitation of phonons and core electrons was taken into 
account, while plasmon excitation was excluded since it 
causes inelastic scattering at extremely small angles. 
Then, Sxh(qo) in (16) was given by the sum of Sg ~h and 
Sg~. For the excitation of phonons (Hall & Hirsch, 
1965), 

S~(qo) = f ( qg ) f (qh ) {exp[ - -a ' (g - -  h) 2] 

_ exp[_a,(q2 + q2)]}/~, (31) 

where 12 is the atomic volume, a' is the constant for the 
Debye-Waller factor and f ( q )  is the atomic scattering 
amplitude. For the excitation of core electrons, we used 
an approximate expression given in the previous study 
(Yamamoto, Mori & Ishida, 1978), 

cr [ Zqs/..Q(qg + qE)(q~ + q2)] Sgh(qO ) = (me2/2n2 h2)2 2 2 
× { I / [ ( g - h )  2 + q2] 

2 2 r~2~(r~2 2 --qs/(qg + Us+ ~h + qs)}, (32) 

where Z is the atomic number, q2 is the screening factor 
[q2 = meE/2n2h2 f(0)],  qt = k A E / E  (k is the wave- 
number of the incident electrons, A E  is the mean 
ionization energy, 11.5Z eV and E is the energy of the 
electrons)• This expression approximately coincides 
with that derived by Lenz (1954) when q0 approaches 
zero, and for g 4= h = 0, as shown by Yoshioka (1957), 
Sg~(qo ) is always positive when qo is perpendicular to g 
and negative when q0 < g (q0 is parallel to g). In 
addition, the value of the expression in the curly 
brackets in (32) is of the same order of magnitude as 
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that derived from a more exact calculation 
(Humphreys & Whelan, 1969). 

The number of matrix elements in this calculation 
was reduced by the following procedure: each dis- 
persion surface was divided into several rectangular 
areas except for the following two areas; the ring- 
shaped area with radii of w = 20 and 100 (w is the 
deviation parameter used in the two-beam approxi- 
mation), and the infinitely small (point-like) area which 
corresponded to the incident direction. Inelastic scatter- 
ing processes transferred beyond the ring-shaped area 
were neglected. One of the margins of the above 
rectangular areas was chosen to be parallel to the x axis 
on the dispersion surface, the axis being parallel to the 
reciprocal vector g of the operating reflection. Then, the 
excitation weights were assumed to be the same over 
each divided area. Since, moreover, the excitation 
weights were symmetric with respect to the x axis, we 
restricted ourselves only to the area whose center lay 
on x > 0. By so doing, each dispersion surface was 
divided into 37 areas in the present calculation. 

The value of the matrix elements was determined by 
integrating (16) over each divided area. The inte- 
gration was normally carried out by using 8-point 
values of Sg h. S~rh(qo) (h = O, g or g) occasionally 
showed a steep rise at positions qh ~ 0. In such cases, 
16-point values were used. After these procedures, 
Tk,S,~ inside the outer-ring area were slightly corrected 
so as to satisfy the self-consistent relation of (18): this 
was performed by multiplying the initially calculated 
value of TkT, ki by --/li(ki)/~. rk,j, ki. 

Excitation weights were calculated for Cu 200 and Si 
220 reflections at an accelerating voltage of 100 kV, 
setting the incident beam at the Bragg position (w = 0) 
or slightly outside the position (w = 3.5). Finally, 
excitation weights were determined by interpolating the 
histogram of O(z) obtained with the above calculations. 

4. Results and discussion 

4.1. Ca lcu la ted  exci ta t ion  weights  

Figs. 2(a) and 3(a) show excitation weights cal- 
culated at w = 0 for Cu and Si, which are plotted 
against k x. In this case, excitation weights at k x < 0 are 
omitted due to symmetry with respect to the y axis. A 
large peak at k x = 0 results from the excitation of core 
electrons. Matrix elements at such divided areas (k  x 
0) can approximately be expressed as* 

Tk,j, k i :  2a'g2 f (g)2(Ci  o C~-- C~ C1o) 
cr i " i Cj). + Soo(O)(Co C~ + Cg 

* The first term in this equation is approximately derived from 
(31) by using the single-phonon excitation only. This term coincides 
with that derived from HSg(qo) given by Takagi (1958a) when the 
element is determined from the longitudinal phonon scattering in 
the Einstein Model (Whelan, 1965b). 

From this equation, it is seen that the phonon excitation 
causes the inter-band transition (Takagi, 1958a), 
whereas the excitation of core electrons causes the 
intra-band transition (Howie, 1963). The latter ex- 
citation is predominantly responsible for the large peak. 
A similar peak appears at k x = G, which results from 
the diffraction effect on the waves proceeding in the k 0 
direction. The matrix element of  the transfer to this 
area on the dispersion surface can approximately be 
given by 

Tk ' j ,k / :  cr i2 " " i2 s~(g)C~ + 2s~ c~ c~ c~ 
cr j + 2Cio Cig S , g ( g ) C  o CJo +2a' g2f(g)2[(Ci o Cio 

+ C~ C~') 2 + 4C~ 2 C~2]. 

This equation indicates a strong transition towards the 
branch 2 which results from the excitation of core 
electrons. 

Figs. 20)  and 3(b) show excitation weights plotted 
against k x under the same conditions as in the above. It 
appears that large-angle scattering along the ky 
direction gives rise to a greater probability of electrons 
falling on branch 2. It is found that at very small thick- 
nesses (200 /k for Cu and 500 A for Si) Iqy2(D)l z is 
greater than I~ (D) I  2. However, as the thickness 
increases I ~,I(D)I z becomes larger, as shown in Figs. 2 

0-06 1 S£ o 
D = 1000 A 

0 04~ 1 0.107 0.452 
" I k 2 0.055 0.231 

0 . 0 2 ~  

o.o I , . . . . . . . . . . . . .  ", . . . .  

0.06 ~ o 

0"941\~ 2 0.023 0.107 

o.f ~ / , , - ~  00, ~ ' ' ~  ~ ,- ............. ; .... 

0.06~ St 
F'I D = lOOO R 

0.04[ _.~. 

o 

o . o  

O. 0 4 ~ ,  

0 . 0 2 ~ ~  

001 

o.o61 D= 4000 ~, 0"061 D= 4oooZ 
0 0 4 [ - ~  1 0.023 0.293 0 . 0 4 [ -  
" ~ 2 0.018 0.033 

o , , °i°2 oo . . . .  : . . . . .  

O G 2G 0 G 2G 

(a) (b) 
Fig. 2. Excitation weights on dispersion surfaces for the Si 220 

reflection at an incidence of w = 0: (a) in the k x direction; (b) in 
the ky direction. Solid and dashed lines indicate the weights in 
branches 1 and 2, respectively. Thin lines are obtained with the 
phonon scattering only. Tables in (a) show the weights at the 
point area (k = 0): upper and lower numerical values are the 
weights for branches 1 and 2, respectively, and left and right 
values are obtained with and without the excitation of core 
electrons. 
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and 3. This is due to the effect of anomalous absorption 
on Bloch waves of branch 2, i.e. to the reduced 
excitation weights of the waves. Such a reduction is 
more prominent for Bloch waves preserving the initial 
incidence state (k = 0), as given in the tables of Figs. 
2(a) and 3(a). Neglecting a minor contribution of S~,, 
the scattering probability for q0 > g is given by 

y. Tk,/,k~ = [a' q~ f ( q o )  2 + a'  (q2 o + gZ) f (qg)2l  
k,i 

+ (_ l ) i2a ,  g2 f(qo)f(qg). 
It is clear that as the scattering angle increases the 
transition to branch 2 becomes predominant due to 
phonon excitation. This fact has already been shown by 
Kamiya & Nakai (1971). Moreover, Kamiya & 
Shimizu (1976) studied the contrast reversal of Kikuchi 
bands by evaluating the difference between I~,I(D)I 2 
and 1~2(D)I z. In their case, a Monte Carlo simulation 
was used, substantially based on the transport equation. 
These authors' results of I~,i(D)l 2 along ky for the Ag 
220 reflection show trends similar to those in the 
present calculation. 

In any case, when compared with the excitation 
weights evaluated by the phonon scattering only, the 
increase in the weights over almost all the areas in the 
dispersion surfaces stems from high-angle scattering of 
electrons which are initially scattered at small angles 
due to the excitation of core electrons. In view of this 
fact, values of excitation weights in relatively thick 
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Fig. 3. Excitation weights on dispersion surfaces for the Cu 200 

reflection at an incidence of w = 0: (a) in the k x direction; (b) in 
the ky direction. The meaning of the lines and the numerical 
values in the tables are the same as in Fig. 2. 

specimens are sensitively affected by the detailed profile 
of S~,(q0), especially at q0 < g. In the present cal- 
culation, the Lenz (1954) approximation was used for 
(32) by including the energy dispersion relation of the 
effective wave-vector transfer q, i.e. q2 = q~ + q2t. On 
account of the sensitivity of S ~  as shown above, a 
more accurate determination of S~, is desired, for 
example, using Freeman's (1959) data. 

In Fig. 4, a similar peak of the excitation weights 
appears in the vicinity of k x = 0, where the incident 
condition is w = 3.5. This is also due to the diffraction 
effect via the excitation of core electrons. Bloch waves 
belonging to branches 1 and 2 for reflection (~ also 
show a marked anomalous transmission or absorption 
at k x -= - g .  It can be anticipated therefore that the 
waves scattered in such areas mainly by the excitation 
of core electrons as seen in Fig. 4 changes the values of 
~(D) calculated in the two-beam approximation. The 
actual profile of q~(D) at the incidence of w = 0 is by no 
means symmetric with respect to the y axis, but rather 
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Fig. 4. Excitation weights on dispersion surfaces for the Cu 200 
reflection at an incidence of w = 3.5. The meaning of lines is the 
same as in Fig. 2. The arrow indicates the incident direction. 
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symmetric to the plane of k x = g/2 when the specimen 
thickness increases. It is desired to evaluate ~(D) in the 
three-beam approximation at least. This problem may 
be solved using a computer with large storage. 

4.2. Cross terms o f  Bloch-wave amplitudes and some 
remarks 

The cross terms, ~t/k,(z) ~'f(z), neglected in (4) are 
related to the interference fringes in the intensities of 
diffusely scattered electrons because of the difference in 
wave vector. Neglecting the terms implies that only the 
background of the intensities is treated in the present 
theory. Resonance error ~k~, z is in proportion to the 
inverse of the specimen thickness, i.e. 6k~,~ = liD (l, 
integer). When, therefore, the exponential coefficients in 
(4) are evaluated by averaging them over all possible 
values of ji 6kin,, the coefficients contain the factor 

exp ( -2n6k~ .  z z) = exp [--a(z/D)Z], 

where a -- 47~2~ l 2. This factor suggests that the cross 
terms provide a rather weaker contribution to the final 
value of ~'Jk,(D) ~,~'(D) in the vicinity of the bottom of 
the specimen. 

Equation (22) is identical, in its form, with that 
derived for noncrystalline specimens based on a trans- 
port equation (Spencer, 1955; Dashen, 1964; Fathers 
& Rez, 1978). In the latter theory, the quantities 
evaluated are electron fluxes while they are excitation 
weights of Bloch waves in the present theory. An 
excitation weight is not directly related to an electron 
flux, but to the intensity of a Bloch wave proceeding in 
various diffracted-beam directions. It can easily be 
verified that when the beam direction is greatly deviated 
from the Bragg position, I ~'/k(Z) l 2 tends to the flux in the 
k direction. Besides, if desired, (8) can be transformed 
to that for the electron fluxes using a linear trans- 
formation within the framework of the approximation 
in which the interference terms can be neglected. 

Rez (1978) has discussed an identity between the 
transport equation and the solution of Howie's 
equations in a more general form which includes the 
cross terms. It appears in the present theory that the 
complete identity can be achieved when all the cross 
terms are neglected. It should be noted, moreover, that 
in practical calculations including the cross terms 
induces a serious difficulty in the storage of the 
computer; when the number of the divided areas in the 
dispersion surfaces is N, the number of excitation 
weights is N, whereas that of the cross terms is N ( N  - 
1). Eventually, the number of transition matrix ele- 
ments becomes N 2 and N 4 for the former and latter 
cases, respectively. 

The storage problem becomes more serious in the 
case of high-angle scattered electrons. Equation (23) 
contains many zero off-diagonal submatrices. In 

addition, all non-zero submatrices can be characterized 
by only three submatrices, T z, T~: and T§, at a certain 
energy (e.g. those at the energy of the incident 
electrons) and by several proportional coefficients 
which are determined from the dependence of the 
elements on the electron energy. Taking into account 
these facts, Fathers & Rez (1978) developed a method 
for diagonalizing (23) with a reduced storage. In fact, 
these authors succeeded in calculating the yield of 
back-scattered electrons in noncrystalline specimens; in 
particular, good agreement with experiment was found 
regarding the dependence of the yield on the atomic 
number, the emitting angle and the energy of back- 
scattered electrons. Their method may encourage 
others to attack multiple inelastic scattering processes 
in crystalline specimens. 

In crystalline specimens, however, there are some 
precautions made in practical calculations: (1) the 
division of dispersion surfaces must be made finer com- 
pared with that in noncrystalline specimens, because a 
rapid change in Bloch-wave coefficients Cg(k) appears 
in the vicinity of Bragg positions, and (2) as shown in 
§ 4.1, the values of excitation weights are markedly 
affected by the detailed profile of S~, resulting from the 
excitation of core electrons. At present, the profile may 
still be uncertain in a greater or lesser degree. 

The author thanks Dr Y. Ishida (University of 
Tokyo) for providing the computer facility used in this 
calculation. He also wishes to extend his thanks to Dr 
Peter Rez (University of California) and Dr David J. 
Fathers (University of Oxford) for showing him their 
preprint and personal communications. 
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Abstract The structures of  titanium sulfides 

The layer units appropriate to the analysis of titanium 
sulfide with stacking faults are considered. The layer 
units composed of one sulfur layer and one titanium 
layer are adopted for the structures whose stacking 
sequences are relatively simple. The layer units com- 
posed of two sulfur layers, one fully occupied titanium 
layer, half of a partly occupied titanium layer and half 
of another partly occupied titanium layer are adopted 
in the case of the more complex stacking sequences. 
The general method for obtaining the diffraction 
intensity distribution by matrices is modified so as to 
be suitable for the analysis based on these layer units, 
and examples of the calculated intensity curves are 
illustrated. 

Introduction 

It is often observed that selective broadening and 
weakening occurs for reflexions with h - k :/= 3n (hkl; 
indices on the hexagonal cell of the close-packing layers 
of sulfur) in the X-ray diffraction pattern of non- 
stoichiometric titanium sulfide. This broadening and 
weakening suggests the occurrence of stacking faults. 
For the analysis of structures with stacking faults, the 
theoretical intensity distribution formulas were derived 
by Wilson (1942), Hendricks & Teller (1942), Jagod- 
zinski (1949a,b), Paterson (1952), Kakinoki & 
Komura (1952, 1954a,b, 1965) and Kakinoki (1965, 
1966, 1967). The scattering powers are not the same 
for all the layers in the case of nonstoichiometric 
titanium sulfide, so the derivation of the expression 
available for this system is required. 

In this paper we consider the layer units appropriate 
to the titanium-sulfur system and propose a modified 
procedure to calculate the intensity distribution by 
using the matrix method given by Kakinoki & Komura. 

0567-7394/80/010134-06501.00 

In the range TiS-TiS2, several phases such as TiS, 
TisS 9, Ti4S 5, TiaS 4, TiES 3, TisS 8 and TiS 2 have been 
found (Jeannin, 1962; Wiegers & Jellinek, 1970; Tronc 
& Huber, 1973). The structures of these phases are all 
based on close-packing layers of sulfur; hexagonal 
close packing for TiS or TiS 2, and more complex 
stacking sequences of h-packed sulfur layers and c- 
packed sulfur layers for the intermediate phases. 
Titanium atoms always occupy octahedral holes in the 
close-packing structure of sulfur. These sites are fully 
and partly occupied in the alternating titanium layers in 
the composition range TiS1. 4 to TiS 2, which corres- 
ponds to the existence range of the phases Ti2S3, TisS 8 
and TiS 2. We will discuss such a range, then three kinds 
of layers are considered; that is sulfur layers, fully 
occupied titanium layers and partly occupied titanium 
layers. They are represented by S, Ti and Ti', 
respectively. The common feature of stacking is 
represented by ... S Ti S Ti' S Ti S Ti' S. . .  as shown in 
Fig. 1. We assume that this common feature of 
stacking is maintained throughout the faulted structure 
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Fig. 1. Schematic drawing of the common stacking features in the 
range TiS1.4 to TiS2. 
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